Using a Metro Map Metaphor for organizing Web-based learning resources
نویسندگان
چکیده
This paper briefly describes the WebNize system and how it applies a Metro Map metaphor for organizing guided tours in Web based resources. Then experiences in using the Metro Map based tours in a Knowledge Sharing project at the library at Aarhus School of Business (ASB) in Denmark, is discussed. The Library has been involved in establishing a Learning Resource Centre (LRC). The LRC serves as an exploratorium for the development and the testing of new forms of communication and learning, at the same time as it integrates the information resources of the electronic research library. It is the objective to create models for Intelligent Knowledge Solutions that can contribute to form the learning environments of the School in the 21st century. The WebNize system is used for sharing of knowledge through metro maps for specific subject areas made available in the Learning Resource Centre at ASB. The metro maps now serve as the entrance to learning resources for several hundred students.
منابع مشابه
NGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map
Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...
متن کاملMonthly runoff forecasting by means of artificial neural networks (ANNs)
Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...
متن کاملRRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features
Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...
متن کاملGeoreferencing Semi-Structured Place-Based Web Resources Using Machine Learning
In recent years, the shared content on the web has had significant growth. A great part of these information are publicly available in the form of semi-strunctured data. Moreover, a significant amount of these information are related to place. Such types of information refer to a location on the earth, however, they do not contain any explicit coordinates. In this research, we tried to georefer...
متن کاملOntological Interoperability of Learning Objects: A Hybrid Graphical-Neural Approach
This paper presents OntoShare, an automated ontology mapping and merging architecture for learning object retrieval and reuse. The architecture aims to offer contextual and robust ontology mapping and merging through hybrid unsupervised clustering techniques comprising of Formal Concept Analysis (FCA), Self-Organizing Map (SOM) and K-Means clustering incorporated with linguistic processing usin...
متن کامل